Título: DEEP LEARNING APPROACHES FOR DIFFERENTIATING LIP CANCER FROM ACTININC CHEILITIS: A MODEL COMPARISON STUDY
Nome do Apresentador: Ivan José Correia NETO
Categoria do Trabalho: Painel de pesquisa científica (PPC)
Área Temática: Estomatologia
Resumo: Objective: This study evaluated six deep learning models (EfficientNet B7, InceptionResNetV2, MobileNetV2, ResNet-152, U-Net MobileNetV2, and VGG16) trained to distinguish clinical images of actinic cheilitis (n=397) from lip squamous cell carcinoma (n=92), totaling 489 images. Methods: The dataset was split into training (80%), validation (10%), and test (10%) sets, preserving class proportions and avoiding data leakage. Two training strategies were tested: (1) a baseline model without balancing; and (2) a model with undersampling and data augmentation. Transfer learning was applied using ImageNet-pretrained weights with fine-tuning. Results: In the baseline, VGG16 performed best (accuracy: 89.6%; F1-score: 0.88; precision: 1.0), despite class imbalance. After balancing, InceptionResNetV2 achieved the highest AUC-ROC (0.866), and VGG16 showed better sensitivity. Conclusion: These findings highlight the importance of balancing and regularization techniques in improving model performance, particularly under clinical conditions marked by lesion heterogeneity and class imbalance.
Autor 1: Ivan José Correia NETO
E-mail 1: [email protected]
Autor 2: Ayrton da Costa GANEM FILHO
E-mail 2: [email protected]>
Autor 3 : Anna Luíza Damaceno ARAÚJO
E-mail 3: [email protected]
Autor 4: Luiz Paulo KOWALSKI
E-mail 4: [email protected]
Autor 5: Alan Roger SANTOS-SILVA
E-mail 5: [email protected]
Autor 6: André Carlos Ponce de Leon Ferreira de CARVALHO
E-mail 6: [email protected]
Autor 7: Márcio Ajudarte LOPES
E-mail 7: [email protected]
Para baixar o aplicativo, escolha abaixo: